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The wavelet expansion has proven to be an efficient
method in the approximation of functions [2–5], thus pro-In this paper, the continuous operator is discretized into matrix

forms by Galerkin’s procedure, using periodic Battle–Lemarie wave- viding an effective approach to the solution of integral
lets as basis/testing functions. The polynomial decomposition of equations. Because of the localized property, vanishing
wavelets is applied to the evaluation of matrix elements, which moment, and multiresolution analysis (MRA) of the wave-makes the computational effort of the matrix elements no more

lets, the resolution level of the solution, which is closelyexpensive than that of method of moments (MoM) with conven-
related to the grid size and the length of the wavelet series,tional piecewise basis/testing functions. A new algorithm is devel-

oped employing the fast wavelet transform (FWT). Owing to localiza- can be chosen adaptively, according to the smoothness of
tion, cancellation, and orthogonal properties of wavelets, very the function at different locations. Beylkin et al. [6] first
sparse matrices have been obtained, which are then solved by the

proposed a nonstandard form wavelet expansion of opera-LSQR iterative method. This algorithm is also adaptive in that one
tors by projecting the operator onto a series of subspaces.can add at will finer wavelet bases in the regions where fields vary

rapidly, without any damage to the system orthogonality of the Wavelets were employed as basis functions in the MoM
wavelet basis functions. To demonstrate the effectiveness of the (method of moments) [7–10].
new algorithm, we applied it to the evaluation of frequency-depen- Since in most practical problems the unknowns are de-
dent resistance and inductance matrices of multiple lossy transmis-

fined on a finite domain, while most orthonormal waveletssion lines. Numerical results agree with previously published data
are developed in L2(R), it is very inefficient to employand laboratory measurements. The valid frequency range of the

boundary integral equation results has been extended two to three these wavelets as bases directly. To overcome this diffi-
decades in comparison with the traditional MoM approach. The culty, the periodic wavelets [11, 12], intervallic wavelets
new algorithm has been integrated into the computer aided design [13], and weighted wavelets [14] are applied to practical
tool, MagiCAD, which is used for the design and simulation of high-

electromagnetic problems.speed digital systems and multichip modules Pan et al. IEEE Trans.
Although sparse coefficient matrices have been obtainedHyb. Manuf. Technol. 15(4), 465 (1992). Q 1997 Academic Press

in the previous approaches, the computing effort in the
evaluation of the matrix elements is much greater than

1. INTRODUCTION that of the MoM with conventional piecewise basis func-
tions. This is due to the poor regularity and lack of analytic

The boundary integral equation method (BIE) has been expressions of most orthonormal wavelets, while the MRA
widely used in the solution of electromagnetic problems. requires accurate evaluations of the inner product inte-
Since only the field quantities on the boundaries are re- grals. The formulations of the previous approaches, al-
quired, the method is suitable for structures of conductors though they keep many nice properties of wavelets, are
in layered and, more generally, piecewise homogeneous not suitable for the fast evaluation of the matrix elements.
media. By employing the Green’s function which takes into In this paper, we formulate a fast and adaptive algorithm
account the boundary conditions, the number of unknown using a combined nonstandard and standard wavelet de-
variables in describing the system is kept to a minimum. composition method, employing the Battle–Lemarie wave-
The disadvantage of the integral equation method is that

lets of different orders. In comparison with the widely usedthe coefficient matrices are dense. It takes O(N2) units of
Daubechies’ wavelets [15], the Battle–Lemarie waveletsstorage and O(N3) multiplications/divisions to solve the
have the advantage of symmetry and, more importantly,matrix equations. These factors restrict the application of
an approximate closed-form representation can be ob-the BIE to only electrically small problems.
tained by decomposing the wavelets into B-splines or poly-
nomials of the same order. This is extremely useful espe-*Current address: Candance Design Systems, San Jose, CA 95134.
cially when spectral integrals are involved. This method,†Current address: Mayo Foundation 2nd St. S.W., Rochester, MN

55905. as shown later, makes the wavelet expansion method no
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conductor cross section and by using Green’s second iden-
tity, a set of surface integral equations can be derived.
Denoting them in the form of operator equations, we have

ZE((n̂ ? =)Ez)) 1 TE(Ez 1 Vk) 5 0
(1)

ZI((n̂ ? =)Ez)) 1 TI(Ez) 5 0, k 5 1, 2, ..., NL ,

where subscripts E and I represent external and internal,
respectively. Ez is the longitudinal component of the elec-
tric field on the conductor surfaces and Vk is the voltage
on the kth transmission line. The operators are defined as

ZE(X) 5 E
Le

dl9GE(r, r9)X(r9), r [ Le , (2)

FIG. 1. NL transmission lines of arbitrary cross section.

TE(X) 5 E
Le

dl9(n̂9 ? =9s)GE(r, r9)X(r9), r [ Le , (3)

more time-consuming than Galerkin’s procedure with B- ZI(X) 5 E
Li

dl9GI(r, r9)X(r9) (4)
spline or polynomial functions as basis functions.

In this paper, the LSQR iterative method is employed
TI(X) 5 E

Li

dl9(n̂9 ? =9s)GI(r, r9)X(r9), (5)to solve these equations. Compared to other iteration
methods, the LSQR method converges very quickly, and
it does not require the sparse matrix to be a positive defi-

where Li , i 5 1, 2, ..., NL denotes the perimeter of the ithnite. A large amount of storage and computation time
conductor; Le 5 <NL

i51 Li ; GI(r, r9) is the 2D homogeneouscan be saved by storing the nonzero elements only. The
Green’s function given bywavelets for the finite energy functional space, L2([0, 1])

[15, p. 305] are constructed from the Battle–Lemarie wave-
lets, from which the corresponding FWT is implemented. GI(r, r9) 5 2

j
4f

H (2)
0 (kiur 2 r9u), i 5 1, 2, ..., NL , (6)

As a direct application of the FWT, the frequency depen-
dent inductance and resistance matrices of lossy transmis-
sion lines are evaluated. In the numerical section of this with H (2)

0 (kiur 2 r9u) being the Hankel function (also re-
paper, it is demonstrated that the wavelet expansion ferred to as the Bessel function of the third kind [16]) of
method extends the valid frequency range of the MoM in the second kind, and
two to three decades toward the lower end and one decade
toward the higher end. The resulting matrices are sparse

ki 5 gÏe«iand well conditioned.

«i 5 «0S1 2 j
si

g«0
D .2. SOLUTION OF INTEGRAL EQUATIONS WITH FAST

WAVELET EXPANSION METHOD

2.1. Basic Formulation of Operator Equations As it will be seen later, the computation of the matrix
elements involves numerical evaluations of twofold inte-Consider a 2D transmission line structure consisting of
grals, which are very time consuming especially when theNL conductors and one ground plane as shown in Fig. 1,
special functions of complex arguments are involved. Sincewhere the ground plane can be a perfect conductor or of
most conductor contours can be approximated by a poly-finite conductivity and finite dimensions. The fields inside
gon, the inner product may be carried out analytically inand outside of the conductors can be decomposed into
the spectral domain [17]. In this case, only the inversecontributions from the TM (transverse magnetic) and TE
Fourier transform is needed. The spectral domain repre-(transverse electric) modes. Since the circumferential com-
sentation of the internal Green’s function GI(r, r9) isponent of the electric current corresponding to the TE

modes is usually much smaller than the longitudinal com-
ponent, we only consider the contribution of the TM mode ĜI(k, y, y9) 5

e2Guy2y9u

2G
, (7)

in this work. By assuming an equal potential at a given
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where where Pd and Wm are the dissipated electric power and
stored magnetic energy under conditions of Ij 5 2Ii .

G 5 Ïk2
i 2 k2 . (8)

2.2. Galerkin’s Solution of Operator Equations

Consider an operator equationUnder the quasi-static assumption, the external Green’s
function GE(r, r9) reduces to

(Tf )(x) 5 g(x), (16)

GE(r, r9) 5 2
1

2f
ln ur 2 r9u. (9) where f (x) is assumed to be a finite energy function. In

the following discussion, we first consider the case where
T is defined on L2(R).

To solve the above operator equations, a constraint is en- With Galerkin’s method, the operator equation is con-
forced, verted into a matrix form

[T j][c j] 5 [g j], (17)E
Li

(n̂ ? =)Eidl 5 2jgeIi , (10)

where
where Ii is the total electric current on the ith conductor

T j
kk9 5 kT(fjk9), fjkl (18)and needs to be specified.

By solving these operator equations, the electric current gj
k 5 kg, fjkl (19)

distribution on the cross sections of the conductors can be
obtained. Other field quantities can be evaluated from the

with fjk9 being the scaling functions. The approximate solu-electric field and its normal derivative on the boundaries.
tion fj(x) may be expressed asAfter the field quantities are solved, the resistance and

inductance of the transmission lines can be computed
fj(x) 5 O

k
c j

kfjk . (20)straightforwardly. The ith diagonal element of the
resistance/inductance matrices, namely, the self-
resistance/inductance of the ith line, is calculated by setting The order of approximation depends on the resolution
the electric current Ii on the ith line, and 2Ii , on the level j of the space in which T is discretized.
reference conductor (ground). Finally, after a long and One method to calculate the matrix elements T j

kk9 is the
tedious journey [19], we arrive at direct evaluation of the inner product, which is usually in

the form of integrals. Generally, the scaling function f(x)
Rii 5 2Pd/uIu2 (11) has a large support (i.e., the domain of nonzero f(x)) and

oscillates rapidly, making this approach time-consuming.Lii 5 4Wm/uIu2 , (12)
The second approach is to use the B-spline decomposi-

tion of wavelets, as shown in Eq. (58) of the Appendix,
where Pd is the dissipated electric power and Wm is the yielding
stored magnetic energy per unit length. After some mathe-
matical manipulations, we end up with T j

kk9 5 O
i
O

i9
aiai9 Z

j
i1k,i91k9 , (21)

Pd 5
1

2ge
R

Le

ImhEz­Ẽzj dl (13) where

Z j
i,k 5 2 j kT(uN(2 jx 2 k)), uN(2 jx 2 i)l (22)Wm 5 2

1
4g2e

R
Le

RehVi­Ẽzj dl, (14)

and uN is the Nth-order B-spline defined in (48) of the
Appendix. Since the B-spline function is very well behavedwhere the tilde denotes the complex conjugate and ­Ez 5

D

with small support and has a closed-form representation,­Ez/­n. The mutual resistance and inductance are ob-
the evaluation of Z j

i,k is much easier than the direct evalua-tained from
tion of T j

kk9 . This makes the wavelet expansion the same
computatonal complexity as Galerkin’s method with con-Rij 5 As(Rii 1 Rjj 2 2Pd/I 2

i )
(15) ventional piecewise bases.

Lij 5 As(Lii 1 Ljj 2 4Wm/I 2
i ), The above procedures are for functions in L2(R). For
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the problems defined on L2([0, 1]), the periodic wavelets Similarly C l, j of 2l 3 2 j is decomposed into
are needed. In this case, the matrix elements T j

kk9 are ob-
tained from T j

pp9 of the L2(R) as
C l,j 5 FAl21, j

C l21, jG , (28)

T j
kk9 5 O

,
O

,9

T j
k12 j,,k912j,9 . (23)

where

2.3. Sparse Matrix Generation with a Fast Wavelet
A l, j

k,k9 5 kT(cj,k9), cl,klTransform (FWT)

B j, l
k,k9 5 kT(fl,k9), cj,kl (29)The continuous linear operator T can be approximated

up to any order by its matrix form C l21, j
k,k9 5 kT(cjk9), fl21,kl.

T 5 lim
jRy

T j, (24) By continuing the above process recursively, we can repre-
sent the operator in terms of wavelets. Since the wavelets
are localized, most matrix elements for [A], [B], [C] arewhere T j is a matrix of N 3 N (N 5 2 j) and is defined as
nearly zero. As a result, a very sparse matrix may bePjTPj with Pj being the projector on Vj . Since Vj11 5 Vj
formed.% Wj , we have

The evaluation of matrix elements A jj
kk9 , B jj

kk9 , and C jj
kk9

is much more time-consuming than the direct evaluation
of T j11

kk9 at the highest resolution level by using the FWT.T j11 5 FA jj B jj

C jj T j
G , (25)

From the MRA of the wavelets, the scaling functions
and wavelets in Vj and Wj can be expressed by the scaling

where T j11 is a matrix of 2N 3 2N; A jj, B jj, and C jj are functions in Vj11 as
block matrices of N 3 N. The above procedure is also
called the nonstandard decomposition of operators [6, 20]. fjk 5 on hn22kfj11,n

(30)In the numerical implementation, we applied the standard
cjk 5 on gn22kfj11,n ,form of decomposition. As will be seen later in this section,

the procedure here is very similar to the fast Fourier trans-
where hk , gk are the corresponding low-pass and band-form. We begin with a matrix of T j11, which is formed by
pass filter coefficients specified by the specific waveletskT(fj11,k9), fj11,kl, i.e., the scaling functions for the basis
used. Substituting (30) back to (26), we haveand, also, testing. Since the scaling functions have nonzero

moments, the resulting matrix T j11 is relatively dense. But,
A jj

kk9 5 kT(cjk9), cjklafter the FWT operations, the corresponding matrix will
be very sparse.

Each entry of the matrix T j11 is a square matrix, with 5 KTSO
m

gm22k9fj11,mD, O
n

gn22kfj11,nL (30)
their matrix elements being

5 O
m
O
n

gm22k9gn22k kT(fj11,m), fj11,nl.
A jj

kk9 5 kT(cjk9), cjkl

C jj
kk9 5 kT(cjk9), fjkl

(26) From the definition of T j11
kk9 , we arrive at

B jj
kk9 5 kT(fjk9), cjkl

A jj
kk9 5 O

m
O
n

gm22k9 gn22kT j11
mn. (32)

T j
kk9 5 kT(fjk9), fjkl,

Similarly, for B jl
kk9 , we have the following relationwhere the four submatrices represent the interaction be-

tween the sources and fields in different subspaces. Notic-
B j,l21

kk9 5 kT(fl21,k9), cjkling that B jl represents the interaction between W j and V l

and that decomposing V l into V l21 and W l21, we obtain a 5 O
m

hm22k9 kT(fl,m), cjkl (33)
recursive relation for B jl,

5 O
m

hm22k9B j,l
k,m .

B j,l 5 [A j,l21, B j,l21], (27)

where B j,l is a matrix of 2 j 3 2l. It can be clearly seen that all the matrix elements may be
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[15]. Consequently, all formulas in the previous subsection
need to be modified accordingly.

Similar to T, the periodic operator T can also be ex-
panded in the sequential form as

T j11 5 FA jj B jj

C jj T j
G , (35)

where each of the four submatrices is a 2 j 3 2 j square
matrix, and

A jj
kk9 5 kT(cjk9), cjkl

C jj
kk9 5 T(cjk9), fjkl

B jj
kk9 5 kT(fjk9), cjkl

(36)
T j

kk9 5 kT(fjk9), fjkl

B jl 5 [A j,l21, B j,l21]

C l,j 5 FA l21,j

C l21,jG
with

A l,j
k,k9 5 kT(cj,k9), cl,kl. (38)

FIG. 2. Schematic diagram of the FWT structure.

Note that the inner product is defined on interval [0, 1] as

generated from T j11. Since the above algorithm is similar
to the fast Fourier transform (FFT), it is referred to as k f, gl 5 E1

0
f(x)g(x) dx. (39)

the FWT.
By using FWT, all other submatrices can be computed as

The FWT is still applicable to the evaluation of the
B jj

kk9 5 O
m
O
n

gm22khn22k9T j11
mn matrix elements. More efficiently, instead of evaluating

A jj
kk9 , B jj

kk9 , C jj
kk9 , and T j

kk9 from T j11
kk9 , we utilize B jj

kk9 , C jj
kk9 ,

and T j
kk9 of the previous section. Following the periodiza-C jj

kk9 5 O
m
O
n

hm22kgn22k9T j11
mn

tion procedure, we have

T j
kk9 5 O

m
O
n

hm22khn22k9T j11
mn9

(34) A l,j
kk9 5 O

,
O

,9

A l,j
(k12l,),(k912 j,9)

A j, l21
k,k9 5 O

m
gm22k9B

jl
km B jl

kk9 5 O
,
O

,9

B jl
(k12 j,),(k912l,9)

(40)
C lj

kk9 5 O
,
O

,

C lj
(k12l,),(k912 j,9)C l21, j

k,k9 5 O
m

hm22kC lj
mk9

T j
kk9 5 O

,
O

,9

T j
(k12 j,),(k912 j,9) .

A l21, j
k,k9 5 O

m
gm22kC lj

mk9 .

For ease of reference, the FWT algorithm described in this In the above equations, the length of summation with re-
section is illustrated graphically in Fig. 2. spect to , and ,9 depends on the resolution level j and

the subscripts k, k9. It can be verified that the length of
2.4. Wavelet Expansion of Periodic Operators

summation with respect to ,, ,9 is at most 2, if 22j max(Lf ,
Lc) # 1, where Lf , Lc are the support or truncation lengthFor a periodic operator T defined on L2([0, 1]), the

periodic wavelets are required in the wavelet expansion of the scaling function and mother wavelet.
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2.5. Expansion of Operators with Periodic Wavelets where i 5 1, 2, ..., NL; En
z,i , ­En

z,i denote the approximation
of the electric field and its normal derivative for the ith

Thus far, we may see that all of the operators are defined
conductor at resolution level n; ci

j0,k , ­ci
j0,k are the coeffi-

on the conductor surfaces (contours) with arbitrary shape.
cients for the scaling functions at resolution level j0 ; ­di

j,kEmploy the following mapping relation
are the coefficients for the wavelets at level j.

Employing the wavelet expansion method for periodic
operators and assembling the matrices together, the un-Li r——R

r 5 fi(x)
[0, 1]i, (41)

known coefficients ci
j0,k , ­ci

j0,k , di
j,k , and ­di

j,k can be solved.
From the orthonormal property of the wavelets, we havewhere ([0, 1])i denotes the segment [0, 1] on the ith axis

of an NL-dimensional coordinate system. Hence, each con-
ductor surface (contour) is mapped to a segment on an R

Li

dl hEz­Ezj 5 O2 j
021

k50
ci

j0,k­ci
j0,k 1 On

i
m21

j5j0

O2 j
21

k50
di

j.k­di
j,k , (46)axis of the NL-dimensional system, and the field quantities

are periodic with period 1.
With such a mapping scheme, the operators are con-

where ni
m 5 minhni

E , ni
­Ej, ni

E and ni
­E are the highest resolu-verted into a set of new period operators of the follow-

tion level for the wavelet expansion of the electric fielding forms
and its normal derivative on the ith conductor, and

ZE(X) 5 ONL

j51
E1

0
GE( fi(x), fj (x9))aj(x9)X(x9) dx9 R

Li

dl­E 5 O2 j
021

k50
­ci

j0k . (47)

if x [ [0, 1]i

It can be seen that all the integrals have been converted
TE(X) 5 ONL

j51
E1

0
(n̂9 ? =9s)GE( fi(x), fj(x9))aj(x9)X(x9) dx9 into summations.

2.6. Solution of Matrix Equations by LSQR Methodif x [ [0, 1]i
(42)

Following the above procedures we end up with a setZI(X) 5 E1

0
GI( fi(x), fi(x9))aj(x)X(x9) dx9,

of linear equations as Ax 5 b. The direct solution of the
matrix equation by Gaussian elimination requires O(n3)x [ [0, 1]i
multiplications/divisions and O(n2) units of storage. This
method is not suitable for the sparse matrices because theTI(X) 5 E1

0
(n̂9 ? =9s)GI( fi(x), fi(x9))aj(x)X(x9) dx9,

sparsity of the matrices is destroyed during the computa-
x [ [0, 1]i tion. Although there are many sparse matrix equation

solvers, most of them require the coefficient matrix to be
where aj(x), j 5 1, 2, ..., NL , is defined as positive definite, which is not satisfied in many practical

problems. Here the LSQR iterative method [21] is em-
ployed to solve the matrix equations.

aj(x) 5 U­fj(x)
­x U . (43) Analytically, the LSQR method is equivalent to the con-

jugate gradient method (CG), except for some more favor-
able properties. In principle, the CG method convergesAlthough the periodic operators are defined in the NL-
for at most n iterations, although it may be far more ordimensional space, their domain and range are defined
far less than the number of iterations, n, depending on theonly on the segments <

NL
i51[0, 1]p

i , which is the union of NL
property of the matrix. The LSQR method is based on thedisjoint one-dimensional spaces. This makes the problem
idea of dividing the solution process into the direct partno more difficult than the one-dimensional case.
and the iterative part. The direct part provides a betterUsing the periodic wavelet bases as defined in Eqs. (64)
preconditioned matrix for the iterative part so that fastand (65) of the Appendix, the electric field and its normal
convergence can be achieved. In the LSQR method, thederivative on the conductor boundaries are expressed as
bi-diagonalization procedures are used for the direct part.
For more details of the algorithm, readers are referred to

En
z,i 5 O2 j

021

k50
ci

j0,kfj0,k 1 On21

j5j0

O2j
21

k50
di

j,kcj,k (44) [21, 22].
The main computation involved in the LSQR algorithm

is the multiplication of a matrix with a vector. The sparsity
of the matrices can be fully exploited. Since most of the­En

z,i 5 O2j
021

k50
­ci

j0,kfj0,k 1 On21

j5j0

O2j
21

k50
­di

j,kcj,k , (45)
matrix elements are zero, a large amount of storage can
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TABLE I

Comparison of Matrix Size between MoM
and Wavelet Expansion

Grid size LMoM(nH) NMoM LW.E.(nH) NW.E.

223 430.2 34 429.5 34
224 573.0 66 572.8 66
225 595.6 130 594.5 98
226 599.1 258 598.8 130

To illustrate the advantage of the wavelet expansion
method over the conventional MoM, the performance of
the two methods are compared in Table I for the problem
in Example 1 with the frequency chosen to be 1 Hz. Using
the normalized frequency [25], 1 Hz here corresponds to
4.2 MHz of typical geometry in the on chip structures.FIG. 3. First quarter of coefficient matrix [Ze] by four level wavelet
In the table, MoM denotes the method of moments withexpansion with Franklin wavelets.
triangle functions as both basis and testing functions, while
W.E. denotes the wavelet expansion method employing

be saved by storing the nonzero elements only. Static stor- Franklin wavelets with only two wavelets added to each
age and dynamic storage are the two main categories of conductor corner at each of the two additional levels; NMoM

storage schemes. Since the sparse matrices are not changed and NW.E. denote the matrix size obtained by the two meth-
in the least-square QR decomposition, the static storage ods respectively; LMoM and LW.E. are the resulting induc-
scheme is adopted due to its ease of access and economy tance values in nano Henrys from the two methods. From
of memory [23, 24]. the table one can see that as the grid refines, the matrix

size by the MoM increases exponentially, while the matrix
3. NUMERICAL RESULTS AND DISCUSSION size for the wavelet expansion increases only linearly. To

achieve the same accuracy, the matrix size for the wavelet
In this section, the FWT is employed to calculate the expansion is much smaller than that of the MoM with

resistance and inductance matrices of lossy transmission triangular basis functions when the grid size is small.
lines of arbitrary cross-section shapes.

EXAMPLE 2. Triple line system. The second example
EXAMPLE 1. Dual lines. The first example is a pair of

deals with a lossy transmission line system, which consists
parallel square transmission lines in free space. The dimen-

of three identical rectangular conductors of equal height
sions of the conductors are 2 mm 3 2 mm, with 2 mm

above an infinite ground plane. The dimensions of the
spacing. The conductors are made of copper with s 5

conductors are w 3 t 5 100 em 3 30 em, with 100 em
5.6 3 107 S/m. Franklin wavelets are used and truncated

edge-to-edge spacing and 30 em height from the ground
at Lf 5 16, and the lowest resolution level is chosen to be

plane, i.e., Fig. 5 in [19]. The ground plane is approximated
j0 5 3.

by a conductor with a cross section of w 3 t 5 1000 em 3
To demonstrate the advantage of the wavelet expansion

300 em. The self and mutual resistances of the three trans-
method, we plotted in Fig. 3 a quarter of the coefficient

mission lines versus frequency are plotted in Fig. 4, while
matrix [Ze] in terms of the magnitude obtained from the

the self and mutual inductances are plotted in Fig. 5. The
FWT method. The magnitude in the figures has been quan-

MoM results are also plotted in Fig. 4 and Fig. 5. Since
tized and is represented by an 8-bit gray level image. The

the standard MoM is very sensitive to numerical errors,
coefficient matrix is obtained from four-level wavelet

the mutual resistances, R12 and R13, and mutual induc-
expansion with Franklin wavelets. It can be seen that the

tance L13 are not stable. Therefore, no MoM curves of
wavelet expansion method results in a very sparse coeffi-

the mutual R or L13 can be plotted. It can be clearly seen
cient matrix. In contrast, the coefficient matrix from the

that by employing the W.E., the frequency range has been
Galerkin method would result in a completely dark figure.

extended two to three decades towards the low fre-
The sparsity reduces the memory requirement, thus

quency end.
allowing us to solve electrically large problems. The itera-
tive method of the sparse matrix solver LSQR is effec- EXAMPLE 3. Hughes aluminum/polyimide MCM test cou-

pon. To verify the new algorithm further, a set of labora-tively used.
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FIG. 4. Frequency dependent self and mutual resistances of three rectangular wires over a ground plane.

FIG. 5. Frequency dependent self and mutual inductancies of three rectangular wires over a ground plane.
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TABLE II lished data and laboratory measurements is observed. The
new method can be applied to electrically large problemsComparison of Measurements against Computations
where the conventional method of moments is not appli-

Line parameter (1 in length) Group 1 Group 2 cable.

H 10 em 20 em APPENDIX: CONSTRUCTION OF ORTHONORMAL
Inductance L (nH/m) WAVELET BASES
Hughes measured 8.4 10.5

A.1. Construction of Battle–Lemarie WaveletsQuasti-static 6.0 8.7

Wavelets 8.0 10.57 The Nth-order Lemarie–Meyer wavelet is constructed
from a linear combination of the translations of the Nth-Resistance R (Ohms/m)

Hughes measured 9.34 8.14 order B-spline function uN(x). The Fourier transform of
uN(x) isQuasi-static 14.07 12.37

Wavelets 8.85 8.53

Impedance Zc (Ohms) ûN(g) 5 e2j(Ng/2) Ssin(g/2)
g/2 DN11

. (48)
Hughes measured
LC meter 48.1 64.8
TDR 50.3 64.7 After orthonormalization [27–29], the scaling function,

which is also referred to as the father wavelet, f(x) canQuasi-static (real part) 39.0 59.0

be obtained by finding the inverse Fourier transform ofWavelets (real part) 45.0 65.03

f̂(g) 5 e2jk(g/2) Ssin(g/2)
g/2 DN11

a21/2
N (g), (49)

tory measurements is compared with our numerical solu-
where k 5 0 if N is odd, or k 5 1 if N is even, withtions in Table II. The test coupon consists of two groups

of single buried strip lines. The dimensions are w 3 t 5
25 em 3 5 em for the strips, and w 3 t 5 125 em 3 5 em aN(g) 5 O

k
uûN(g 1 2fk)u2. (50)

for the bottom ground plane. All conductors are made of
aluminum with conductivity s 5 3.0 3 107 S/m. The height

The functions aN(g) for the first- to fifth-order Battle–of the strip line to the ground plane H is 10 em for group
Lemarie wavelets are given in Table III.1 and 20 em for group 2. The operating frequency is f 5

The mother wavelet is obtained from the Fourier200 MHz. The traditional quasi-static model [26] neglects
transformthe internal inductance and assumes that current is only

flowing on the surface region of the cross section. This
model may well underestimate the inductance value near

ĉ(g) 5 e2jg/2m0 Sg
2

1 fD f̂ Sg
2D, (51)

30% and overestimate the resistance value up to 50%.

4. CONCLUSION where the overline denotes the complex conjugate and

In this paper, the periodic Battle–Lemarie wavelets are
constructed and applied to the solution of boundary inte-

TABLE IIIgral equations in electromagnetics. A fast wavelet trans-
form algorithm is developed. By using the polynomial de- Function aN(g) for the First- to Fifth-Order

Battle–Lemarie Waveletscomposition of wavelets, the computational complexity in
the evaluation of the coefficient matrix elements is equiva-

N aN(g)lent to that of Galerkin’s method with the same order
polynomial bases. Since the resulting coefficient matrices 1 1 2 Sdsin2(g)
are very sparse, memory storage and computational effort 2 (2 cos4(g) 1 11 cos2(g) 1 2)/15

3 (64 cos6(g) 1 1824 cos4(g) 1 2880 cos2(g) 1 272)/5440are significantly reduced when employing dynamic pro-
4 (256 cos8(g) 1 31616 cos6(g) 1 185856 cos4(g) 1 137216 cos2(g)gramming and the LSQR iterative method. The new

1 7936)/362880algorithm is applied to the computation of frequency-
5 (1024 cos10(g) 1 518656 cos8(g) 1 8728580 cos6(g) 1 21253400

dependent resistance and inductance matrices of lossy cos4(g) 1 9061380 cos2(g) 1 353793)/399168
transmission lines. Good agreement with previously pub-
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c(x) 5 O
k

bk uN(2x 2 k 2 1), (59)
m0 Sg

2D5
f̂(g)

f̂(g/2)
. (52)

where bk is obtained by using (54),
Since all orthonormal wavelets, except the Haar system,

do not have an explicit closed form representation, they bk 5 Ï2 O
n

gnak2n. (60)
are usually represented by the two level relations

Since the scaling function and mother wavelet are symmet-
f(x) 5 Oy

n52y

hnf1,n (53) ric and anti-symmetric, we have

a2k 5 ak
(61)c(x) 5 Oy

n52y

gnf1,n, (54)
b2k 5 (21)N21bk.

where hn, gn are constant coefficients for the specified For the Franklin wavelets, the scaling function and
wavelet system and mother wavelet are decomposed into a sequence of tri-

angles,
fj,k 5 2 j/2 f(2 j x 2 k) (55)

f(x) 5 ok ak T(x 2 k)
(62)cj,k 5 2 j/2 c(2 j x 2 k). (56)

c(x) 5 ok bk T(2x 2 k 2 1),

Coefficients hn, gn are the corresponding low-pass and
whereband-pass filter coefficients and can be evaluated from the

MRA of the wavelets as

T(x) 5 H1 2 uxu if uxu , 1,

0 otherwise.
(63)

hn 5 kf0,0, f1,nl
(57)

gn 5 (21)12nh12n.
The coefficients ak and bk are given in Tables IV and V.

For the Franklin wavelets, or the first-order Lemarie– A.3. Construction of Wavelets on L2([0, 1])
Meyer wavelets, the filter coefficients hn are given in

So far, the wavelets are constructed as sets of orthonor-Table III.
mal bases for L2(R). For many practical problems, theThe scaling function f(x) and mother wavelet c(x) of
unknowns are defined on a finite interval. Thus, if thesethe first- to third-order Battle–Lemarie wavelets are shown
wavelets are applied directly, the end points of the intervalin Figs. 6 and 7.
must be treated carefully. Otherwise, the orthogonality of
the system and the sparsity of the matrices will be degradedA.2. Decomposition of Battle–Lemarie Wavelets
[10]. In this section the periodic orthonormal wavelet bases

Two disadvantages of wavelets are the lack of closed- for the periodic space L2([0, 1]) are constructed.
form representation and fast oscillation, which make nu- The periodic wavelets are the simplest orthonormal
merical computations very expensive if the wavelets are wavelets on a segment. The scaling function and mother
employed as basis functions directly. By observing the con- wavelet for L2([0, 1]) can be constructed from the available
struction process of the Battle–Lemarie wavelets we see orthonormal wavelets for L2(R), using the fact that
that both the scaling functions and the wavelets are the L2([0, 1]) is a subspace of L2(R). Denoting the periodic
composition of the dilations and translations of the B- scaling functions and wavelets on the segment [0, 1] as
spline functions. This fact allows us to express the wavelets fjk and cjk, we have
by a set of B-spline functions, namely

fjk 5 O
,[Z

fjk(x 1 ,) (64)
f(x) 5 O

k
ak uN(x 2 k), (58)

cjk 5 O
,[Z

cjk(x 1 ,), (65)

where the coefficients ak are obtained by expanding
a21/2

N (g) into the Fourier series. where j $ 0, k 5 0, 1, ..., 2 j 2 1.
By assuming that the lowest resolution level is highSimilarly, the wavelets are represented as
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FIG. 6. Scaling function of the Franklin, quadratic, and cubic Lemarie–Meyer wavelets for L2(R).

FIG. 7. Mother wavelet of the Franklin, quadratic, and cubic Lemarie–Meyer wavelets for L2(R).
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TABLE IV TABLE VI

bk, the Triangle Decomposition of the Mother FranklinH Filter for Franklin Wavelet
Wavelet c(x)

n 0 1 2 3 4
k 0 1 2 3 4hn 0.817639 0.397295 26.90964E-2 25.19436E-2 1.69705E-2
bk 1.68193 20.927157 0.495137-2 7.74402E-2 2.37810E-2

n 5 6 7 8 9
k 5 6 7 8 9hn 9.99035E-3 23.88322E-3 22.20192E-3 9.24030E-4 5.12733E-4
bk 21.96407E-2 24.64087E-3 4.12684E-3 1.19977E-3 29.81160E-4

n 10 11 12 13 14
k 10 11 12 13 14hn 22.23886E-4 21.22829E-4 5.53061E-5 3.00401E-5 21.38087E-5
bk 22.91486E-4 2.35038E-4 7.28989E-5 25.76965E-5 21.82992E-5

n 15 16 17 18 19
k 15 16 17 18 19hn 27.45399E-6 3.53383E-6 2.48447E-6 2.17113E-7 21.22248E-8
bk 1.43298E-5 4.63154E-6 23.59569E-6 21.17852E-6 9.09006E-7

enough so that 22j max(Lf, Lc) , 1, where Lf and Lc are
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